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ABSTRACT
Artificial intelligence (AI) research has become prominent
in both academia and industry. With this, an interest in
AI’s ability to make sound decisions when compared to hu-
man decision making has grown. Predicting the outcome
of sporting events has traditionally been seen as a di�cult
task, due to the complex relationships between variables of
interest. Attempts to make accurate predictions are fraught
with biases owing to the bounded rationality within which
human decision making functions. This study puts forward
the position that an AI approach using machine learning
will yield a comparable level of accuracy. A random forest
classification algorithm was employed to predict match out-
comes in the 2015 Rugby World Cup. The performance of
this model was compared to aggregate results from Super-
Bru and OddsPortal. The machine learning based system
achieved an accuracy of 89.58% with 95%-CI (77.83, 95.47)
vs. 85.42% with 95%-CI (72.83, 92.75) for the platforms.
These results indicate that for rugby, over the limited pe-
riod of a specific tournament, the evidence was not strong
enough to suggest that a human agent is superior in terms
of accuracy when predicting match outcomes compared to a
machine learning approach, at a significance level ↵ = 0.05.
However, the model was better able to estimate probabili-
ties as measured by monetary winnings from betting rounds
compared to the two platforms.
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1. INTRODUCTION
A large part of human decision making involves prediction,

which is therefore an implicit requirement for any AI system
comparable on a certain task. Furthermore, prediction and
sport have gone together since the inception of the latter
[23]. Indeed, in Ancient Rome the prediction and betting
on the outcome of games was often of greater importance
than the spectacle itself [9]. Today, sports prediction has
grown into a sophisticated endeavour described by many as
both an art and a science [30]. However, sports prediction
is characterised by distinct di↵erences between amateurs,
experts, and sophisticated mathematical models.

1.1 Sport as Research Platform
There are a few reasons for choosing the domain of sport

to serve as a platform for comparisons. First, sports predic-
tion is a growing area of interest in which a large number
of experts and laypeople attempt to make predictions re-
garding the outcome of an event. This has been mirrored
by the rise of online sports prediction and betting services
[36]. Combined, this allows for the representation of a large
sample of predictions made by human agents for compari-
son. Furthermore, sports prediction has not only captured
the interest of the public, it has become a growing area of
academic interest, especially in the fields of AI and machine
learning. E↵orts within these fields have sought to create
methods to enhance the accuracy of sports prediction by re-
moving the human element and supplanting it with su�cient
computational power and AI [19, 10, 42].

1.2 Research Goals
Sports prediction poses an interesting research problem,

primarily due to the fact that the outcomes of sporting
events are often determined by many interrelated and dif-
ficult to quantify factors. Potential factors influencing out-
comes include the weather, previous results, players’ expe-
rience, crowd support and even morale. However, it is clear
from the continued popularity of sports betting and online-
prediction leagues such as SuperBru [3] and betting websites
such as OddsPortal [2] that factors such as these do not
present a prohibitive burden to would-be pundits, punters
or bookies engaging in sports prediction.

The primary issue explored in this study is a compari-
son between the sports prediction ability of the intuitive ap-
proach, and an algorithmic, rational approach. More specif-
ically, this study compares the predictive ability of human
agents to that of an artificially intelligent agent based on
a machine-learning prediction model. This is to be done

Manuscript: Find Final Version Through the ACM at:
doi.org/10.1145/2987491.2987493



in the context of predicting the outcomes of rugby matches
taking place throughout the 2015 Rugby World Cup (RWC).
A comparison between the outcomes achieved by punters on
SuperBru and OddsPortal (standing as proxies for the hu-
man prediction ability) and the predictions derived from this
model is presented. To this end, the primary hypothesis is
proposed:

• H1: The performance of a human agent is superior to
that of a machine agent (an AI system) in terms of
accuracy in the domain of sport prediction.

A test for the primary hypothesis is unfortunately not di-
rectly attainable, therefore using proxies for a human agent
and restricting the scope of sport prediction to only include
the 2015 RWC, the secondary hypothesis is proposed:

• H2: The performance of online platforms SuperBru
and OddsPortal, serving as proxies for the prediction
abilities of a human agent when faced with the task of
predicting the outcomes of matches at the 2015 RWC,
is superior to that of a machine learning model.

The paper is structured as follows. First, the theoreti-
cal basis for understanding the human prediction ability is
established through a brief review of the literature. Next,
the supervised learning approach to machine learning is dis-
cussed primarily within the classification setting. This sec-
tion aims to provide the necessary background regarding key
machine learning concepts relevant to the model created to
generate predictions for the RWC. The next section details
the development process for the machine learning model em-
ployed in this study. The penultimate section then presents
an evaluation of the outcomes of the model in comparison
with the outcomes achieved by other platforms representing
human sports prediction capabilities. Finally, a discussion
of findings that stand out, the shortcomings of the proposed
system as well as the research design are presented.

2. BACKGROUND
There exist many di↵erent approaches to the task of sports

prediction. This domain of research is saturated with studies
exploring strategies for predicting the outcomes of particular
sporting events [19, 10]. Two distinct classes emerge through
which the study of predictions is approached. First, there is
the analytic approach, attempting to improve the accuracy
of forecasts through the aggregation of large datasets of in-
formation pertinent to the particular sporting domain. The
second class of prediction research falls within the cognitive
and behavioural sciences. This area seeks to understand
how people make predictions. Stemming from this second
class of research is a body of knowledge supporting the role
of simplistic techniques for casting predictions. We begin
our analysis by presenting a review the literature regarding
these approaches to prediction.

2.1 Human Prediction
When making predictions people rely on their previous

experiences, knowledge of past events as well as their judge-
ment and intuition [28]. The ability to create predictions
is based on our capacity to collect, filter and analyse vast
quantities of information simultaneously, within a contex-
tual framework. When broken down to its constituent parts,
making predictions forms a decision making problem. The

predictor is compelled to complete a series of decisions about
the role particular factors might have on the outcome, ulti-
mately making a decision in favour of one out of many pos-
sible futures. While there are clear examples of the power
of the human decision making ability, a significant body
of research exists underlying the bounded rationality that
shapes human decision making and how this leads to cog-
nitive biases and errors in forecasting and prediction [39].
Research into individual’s abilities to make predictions is
shaped around two dichotomous schools of thought. The
first outlook advances the idea that decision making abil-
ities are predisposed to cognitive biases, undermining the
capacity to make accurate predictions [21]. Conversely, the
second school of thought argues that these ‘tricks’ used to
make decisions often lead to more accurate choices being
made [4].

March [31] outlines deficiencies in peoples’ abilities to in-
terpret and extrapolate from evidence of past events, ex-
plaining that these limitations undermine the accuracy of
predictions stemming from observations of previous events.
These limitations include: inaccurate recall, remembering
history in ways dependent on current beliefs; superstitious
learning, assigning causal significance to correlated but in-
consequential actions; and compounding current wishes and
hopes with their expectations of reality [31]. While these
limitations impair judgement and the ability to create accu-
rate predictions, other research has shown that the simpler
methods commonly employed by experts, fans and punters
alike can in fact produce predictions with comparable accu-
racy to more complex, statistical methods [21].

2.1.1 Rationality
People make decisions and predictions under the constraints

of limited time, knowledge and cognitive-processing capabil-
ity [17]. The concept that rationality in decision making is
constrained by these forces was coined ‘bounded rationality’
by Simon [39] in 1972. Building upon the idea of bounded
rationality, decision theorists have shown that instead of
considering all alternatives, people typically consider only
a few potential options [31]. Moreover, relevant informa-
tion potentially aiding the analysis of future outcomes is
not sought [31]. Information constraints manifest as limita-
tions in attention, memory, comprehension and communica-
tion abilities [31]. Kahneman and Tversky note that three
classes of information are required when making predictions:
background information, specific contextual information and
information about the expected accuracy of the prediction
[27]. Bounded rationality hampers the gathering of this in-
formation, inhibiting accurate prediction making.

2.1.2 Heuristics and Biases
When making predictions or decisions people recognise

patterns in the situations they face and apply rules of ap-
propriate behavior to those situations [31]. These rules are
known as fast and frugal heuristics. Fast, because they avoid
estimation and frugal, because information is ignored [21].
Kahneman and Tversky establish the cognitive basis un-
derlying common errors in decision making, prediction and
probability judgement; arising from various heuristics and
biases. In their 1973 study [27] exploring the psychology
of prediction Kahneman and Tversky investigate the rules
that determine intuitive judgements of confidence, contrast-
ing these rules with the normative principles of statistical



prediction. This study empirically confirms that people rely
on a limited number of heuristics to arrive at predictions, ig-
noring prior probabilities and evidence potentially useful in
improving the accuracy of their predictions [27]. Extending
this idea March [31] explains that people spurn the calcu-
lation of the probability of future events through the use
of complex decision trees, in favour of using the output of
memory to inform how frequently similar events have oc-
curred in the past. March summarised this idea by stating
that people “use the results of memory as a proxy for the
projection of future probability”[31].

Kahneman and Tversky [26] posit that when making pre-
dictions, individuals place a disproportionate amount of em-
phasis on novel information. However, this idea has been
countered by experimental evidence suggesting that in fact
people anchor on previous results and undervalue new infor-
mation when making predictions [42]. A further bias that
emerges relating to the interpretation of information has
been termed the notion of a “hot hand”. This bias is charac-
terised by the belief that a streak of positive results is always
followed by more positive results [18] — a misunderstand-
ing of the statistical property of event independence. Paul
and Weinbach [33] show that bettors frequently over-bet on
teams experiencing winning streaks. A further element in-
troducing biases decision making is sentiment for particular
teams. Research in this area has shown that sentiment plays
a significant role in the prediction and placing of bets in the
context of sporting events [44].

While many biases in decision making emerge from the
proclivity to use heuristics over more complicated statistical
procedures, Goldstein and Gigerenzer [21] present an argu-
ment that heuristics used intuitively can in fact be as ca-
pable or even more accurate than statistical procedures for
arriving at predictions. Goldstein and Gigerenzer analyse
a study exploring the performance of a recognition heuris-
tic employed by amateurs to that of more established rank-
ings and prediction benchmarks in tennis. The recognition
heuristic works as follows: “If only one of the teams is recog-
nized, predict that the recognized one will win”[20]. In two
studies [38, 37] use of this heuristic led to accurate predic-
tions as often or better than the o�cial benchmarks. These
results lend credence to the idea that heuristic based predic-
tion can outperform more complex prediction methods.

2.1.3 Extracting knowledge from experience
Making accurate predictions requires the assimilation of

knowledge from previous experiences with specific informa-
tion relevant to the context [27]. March describes three
biases pertaining to the quality of information extracted
from previous experiences, inhibiting peoples’ ability to ac-
curately forecast future events [31]. In order for accurate
predictions to be made an understanding of the causal struc-
ture for the phenomena needs to be arrived at. This un-
derstanding is reduced by the tendency to interpret previ-
ous experiences on the basis of insu�cient information [31].
Moreover, the comprehension of causal relationships is fur-
ther undermined by the ambiguity of information received.
March explains that people face great di�culty in separat-
ing causal e↵ects from random, extraneous forces. Finally,
past successes in predictions cloud future judgements, March
showed that successful past actions tend to be repeated [31]
— this tendency leads to the redundancy of experience and
the inability of people to adequately extract knowledge use-

ful in making predictions.

2.1.4 The role of expertise
Research into sports prediction has typically focused on

the forecasts of experts in the domain [11, 41, 4]. The ac-
curacy of experts’ predictions is compared to those of am-
ateurs, prediction markets or other sources of predictions.
Comparing the predictions of experts, amateurs and pre-
diction markets with algorithmic, machine learning based
predictions has not emerged in the research as a prominent
focus area. In a study comparing the accuracy of prediction
markets and sports experts, Spann and Skiera [41] note that
the empirical evidence for the accuracy of experts in mak-
ing sports predictions is limited. Interestingly, this study
indicated that prediction markets and betting odds are far
more accurate in predicting results. Similarly, in a study
exploring the di↵erences between experts and non-experts
in predicting outcomes of the 2002 Football World Cup,
Andersson et al. [4] show that experts in this domain fail
to achieve more accurate predictions than individuals with
limited domain knowledge. Goldstein and Gigerenzer [21]
comment on this study describing the positive performance
of the recognition heuristic as a result in favour of simplis-
tic prediction techniques. However, while this may be the
case, these results also confirm the cognitive biases described
by Kahneman and Tversky [27] and the flawed judgement
utilised in creating forecasts and predictions by both ex-
perts and non-experts alike. While both Spann and Skiera
[41] and Andersson et al. [4] underscore the deficiencies in
expert-based predictions, they do not make any comparison
to statistics based prediction techniques, implying that this
area of research requires further investigation.

2.2 Machine Learning
Machine learning is the approach taken in this study to

create an artificially intelligent agent capable of challeng-
ing the sport prediction capabilities of humans. Specifically,
machine learning for prediction usually takes the form of us-
ing a set of inputs X1, ..., Xp to predict an unknown value
Y . An approach often considered when faced with such a
setting is supervised learning. The basic idea of supervised
learning is to monitor the system of interest over a period
of time and collect data of both the inputs and the corre-
sponding outputs. Once the data has been collected both
the recorded input and output values can be used to extract
rules by which knowledge of the input values can accurately
produce the corresponding output values. The rule extrac-
tion is typically performed by a predefined computer algo-
rithm known as a learning algorithm which is “trained” to
approximate the unknown mechanism governing the system
using the data. It is for this reason that the recorded data
consisting of input-output pairs is aptly named the train-
ing data. The architecture of a learning algorithm often
depends on the nature of the output value of interest. The
main distinction is between quantitative outputs Y which
lead to the development of regression algorithms and quali-
tative outputs C which lead to the development of classifi-
cation algorithms. The focus of this paper is classification
(whether a team won or lost a match), however estimating
the probabilities of winning or losing can be seen as modeling
a quantitative output.



2.2.1 Supervised Learning for Classification
In classification the output C takes on values k 2 {1, ...,K}

representing di↵erent groups or classes to which inputs fed
to the system can belong. In this paper we will focus on
the (common) binary case in which K = 2 (a match is
won or lost), meaning that the outcome of a tied match
was not considered in the modeling process (K = 3). For
the time being, without loss of generality let C 2 {0, 1}.
A classification algorithm then aims to be able to take an
observed input x without knowledge of the corresponding
output and assign it to the correct class. However, it is rare
for any system that a given input can be uniquely deter-
mined as belonging to a certain class. As a consequence
classification often boils down to estimating class probabil-
ities. Suppose x 2 IRp, a point in a p-dimensional input
space, then x can belong to class 1 only with a certain prob-
ability P (C = 1|x) = 1� P (C = 0|x) based on its location.

2.2.2 Expected Loss and the Bayes Classifier
Naturally, misclassification of a point x by a classifier

g(x) will have associated with it some form of cost or loss.
Suppose `0 is the loss incurred for misclassifying x as be-
longing to class 0 instead of class 1 and `1 vice versa. Let
I0 = I(g(x) = 0), then the expected loss is

E
⇥
L(C, g(x))

⇤
= `0I0P (C = 1|x) + `1I1P (C = 0|x), (1)

where I(·) is the indicator function equal to 1 if its ar-
gument is true, 0 otherwise and L(·, ·) is a loss function.
If `0 = `1 = 1, the loss function becomes L0-1(C, g(x)) =
I(g(x) 6= C) known as the 0-1 loss with an expected value

E
⇥
L0-1(C, g(x))

⇤
= I1P (C = 0|x) + I0P (C = 1|x). (2)

Note that (2) implies that if P (C = 1|x) > 0.5 the expected
loss incurred for misclassifying x as belonging to class 1 is
P (C = 0|x) = 1 � P (C = 1|x) < P (C = 1|x), the loss
for the opposite mistake. The optimal classifier which will
minimise the expected loss in this situation will therefore be
a rule classifying to the most probable class, i.e.

gB(x) = I

✓
P (C = 1|x) � `1

`0 + `1
=

1
2

◆
, (3)

called the Bayes classifier [13]. It is important to realise
that even the optimal (Bayes) classifier will rarely achieve
perfect classification due to the intrinsic probabilistic nature
underlying observable systems. In addition, it is often the
case that `0 = `1, but also not uncommon to be faced with
the setting where `0 6= `1. Asymmetry related to di↵erent
types of misclassification departs from the 0-1 loss frame-
work and classification by way of most probable class. How-
ever the Bayes classifier is still well defined, since the thresh-
old is simply adjusted (away from 0.5). A key assumption
in the approach taken in this paper is that `0 = `1. In other
words, the loss associated with misclassifying a match as a
win for a particular team when in fact they lost is equal to
misclassifying a loss when in reality a win was observed.

2.2.3 Generalisation Error
A related quantity to that of expected loss is the gen-

eralisation or test error of a classifier which is dependent
on a particular training set. Consider the following set

of input-output pairs forming the training set (of size N)
⌦tr = {(xi, ci), i = 1, ..., N} then the generalisation error
for g(x) is given by the following expectation

Err⇤ = E
⇥
L(C, g(x))

��⌦tr]. (4)

There is a greater interest in obtaining an estimate of (4)
since it is an error measure that is a closer reflection of the
real world. The expectation in (2) is taken over all possi-
ble training data sets sampled from the joint distribution
(X,C), which is clearly a quantity further from reality. So
in summary, supervised learning for classification seeks to
find a model (function) g(x), by way of a learning algorithm
trained using a particular training set ⌦tr, capable of min-
imising the generalisation error Err⇤.

2.2.4 Trees for Classification
Concretely, consider a situation where there are two input

variables X1 and X2 believed to be related to a qualitative
binary output C 2 {b, o}. The two-dimensional input space
depicting the locations of training data points is presented
in Figure 1.

X2

X1

Figure 1: Two-dimensional input space.

The first step is to use these points to learn a rule capable
of separating as well as possible the observations illustrated
by the blue circles in Figure 1, from the orange triangles.

Consider the following strategy: take the input space and
split it into two rectangular regions achieving a reasonable
degree of separation. Next, treat each new region as the first
and split it into two smaller rectangular regions. Continue in
this way until each region is fairly homogeneous with respect
to class representation. The steps are illustrated in the left
panel of Figure 2 where the input space is split into regions
R1, R2, ..., R5.

X2

X1
s1

s2

s3

s4

R1

R2

R3

R4 R5

X1 ≤ s1
<< YesNo >>

X2 ≤ s2 X2 ≤ s3

R1 R2 R3X1 ≤ s4

R4 R5

Figure 2: Binary classification tree.

The right side of Figure 2 is an isomorphic representation



of each recursive binary partitioning. The picture is resem-
blant to that of an upside down tree and therefore the appro-
priate name given to this type of classifier is a classification
tree. Each rule (i.e. X1  s1) is called a node in the tree and
corresponds to a partition of the input space. When a node
is split, each resulting node is referred to as a child node
of the original. The CART [8] algorithm for classification
trees finds the best split at each node by searching over all
available input variables and split-points and selecting the
optimal variable and split-point pair minimising the sum of
child node impurities 1. For other approaches towards tree
induction, see [22, 34, 35, 25].

At prediction time a new unseen observation x0 can be
“dropped” from the root node at the top and based on which
rules are satisfied follow a specific path down to a terminal
node at the bottom of the tree. The quantity P (C = b|x0) =
1�P (C = o|x0) can be estimated by computing the respec-
tive proportions of each class inside the terminal node to
which x0 belongs. Symmetric loss classification is then per-
formed by way of the most probable class.

Tree classifiers are intrinsically attractive since they natu-
rally handle quantitative and qualitative data types as well
as missing values, are robust to outliers and possess a form of
implicit variable selection able to deal with many irrelevant
input variables [24].

2.2.5 Training Error and the Bias-Variance Trade-
off

The training error of a classifier Ērr = 1
N

PN
i=1 L(ci, g(xi))

measures the average loss over the training set. For trees the
training error Ērr can be made arbitrarily small by simply
continuing the splitting procedure until each region contains
only points belonging to a single class. However, this by no
means guarantees that the tree classifier will generalise well
to data presented to it in the future.

The drawback with this approach is that the measure of
variability dependent on the locations of the sampled train-
ing points, the variance of the classifier, is high. In other
words, it can be imagined that if a new round of data record-
ing took place from the same system under study that the
layout of the partitioned space might change considerably
from the one presented in Figure 2. This is in contrast with
a simple linear separating boundary that is less suscepti-
ble to changes in the data. Less complex approaches such
as linear regression are “rigid” in this sense and is said to
have low variance. However, they rely heavily on the rather
strict assumption that the separating boundary appropriate
for the data is a (p� 1)-dimensional hyperplane. This high
bias might cause linear classifiers to su↵er if in truth these
assumptions are incorrect. Trees on the other hand are more
complex making very few assumptions regarding the shape
of the decision boundary and therefore have low bias. This
trade-o↵ based on model complexity is referred to as the
bias-variance trade-o↵.

2.2.6 Beyond a Single Tree
Much of the recent success in the development of machine

learning algorithms have gone the way of using multiple clas-
sification trees as base learners, combined in clever ways to
produce a better performing ensemble classifier [5, 12, 7,

1The impurity of a node is a measure of the heterogeneous-
ness inside the defined region with respect to class represen-
tation.

14, 15]. To loosely motivate this approach, from a variance
reduction perspective, consider the following general argu-
ment [24]. Let X1, ..., XB be identically distributed vari-
ables, not necessarily independent with V ar(Xi) = �2 and
Cov(Xi, Xj) = ⇢�2, 8i, j, i 6= j. This gives

V ar(X̄) = V ar

✓
1
B

BX

i=1

Xi

◆
= ⇢�2 +

1� ⇢

B
�2. (5)

Taking the average over a large number of random vari-
ables reduces the variance and ensures that the second term
in (5) can be made arbitrarily small by increasing B. This
motivates aggregation. However, the first term remains un-
a↵ected by the size of B and only interacts with the mag-
nitude of the correlation between the variables. Going one
step further, many proposals have been made that in addi-
tion to aggregation, some degree of artificial randomness is
injected into the algorithm [7, 16, 32, 46]. This can actually
have an e↵ect of reducing the correlation ⇢ and thus further
reduce the variance. An algorithm using this approach is
called a random forest [7].

3. METHODOLOGY
In order to generate predictions for the outcomes of the

matches, a two stage approach was adopted. The first stage
was to collect past data of international rugby matches.
Once the data had been collected, cleaned and processed,
di↵erent random forests were trained and compared with
each other. The best model was selected based on metrics
such as training time and test error. This provided a ma-
chine agent ready at the start of the tournament. The sec-
ond stage involved creating an automated cloud-based sys-
tem able to collect the most recent match data after every
match. The model was then automatically retrained incor-
porating the newest available data and updated estimates
were produced.

A summarised version of the methodology discussed thus
far is provided in Figure 3.

Figure 3: Project pipeline.

Comparisons were conducted with the aggregate results
achieved by human agents on the sports prediction platform
SuperBru as well as an analysis of potential monetary win-
nings through sports betting website OddsPortal.

There exist several reasons underlying the decision to em-
ploy these platforms as proxies for the predictive ability of
human agents. Primarily it is the view of the researchers
that both of these platforms espouse several of the charac-
teristics of prediction markets. Prediction markets are com-
monly defined as markets facilitating the exchange of trades
on the outcome of events — the market price is an indica-



tion of the crowd’s perception of the probability associated
with a particular outcome [40]. OddsPortal meets all of the
traditional requirements of a prediction market.

The reasons behind the conceptualisation of SuperBru as
possessing several of the qualities of prediction markets re-
quires further clarification. While it is true that the platform
does not facilitate the trading of predictions for sporting out-
comes, there exist other reasons why this platform can be
portrayed as sharing the characteristics of prediction mar-
kets. Users compete in pools, earning points based on the
accuracy of their predictions. In addition to the leaderboard-
facilitated competition incentivising accuracy, in many cases
there exist monetary and material prizes for performance
within these pools. For these reasons it is argued that the
predictions derived from SuperBru share the characteristic
of prediction markets, representing the collective predictions
of the crowd. Snowberg, Wolfers and Zitzewitz [40] explain
that because superior performance produces monetary re-
wards, there exists a financial incentive for users to provide
the most accurate predictions. This is useful because it im-
plies that the predictions made are accurate representations
of the individuals’ true feelings about the outcomes — a
factor missing from many other forms of opinion gathering
used in sports forecasting [40].

3.1 Data Collection
The data was collected from public websites including:

• http://www.rugbydata.com: for each of the 20 teams
in the RWC we collected some general historical team
statistics and past match data stretching back to the
beginning of 2013 2.

• http://wrr.live555.com: we collected rankings of each
team as well as their recent change in rank.

• http://en.wikipedia.org/wiki/World Rugby Rankings: we
collected ranking points.

Once the data was cleaned and structured into a tidy data
set where each observation represented a match between two
teams together with team related statistics for each team, it
was split into a training and test set. The test set contained
every second match from the start of 2015 until the most
recent match prior to the tournament, which included 21
matches in total. All the remaining matches were used for
training (379 matches in total). The output variable was
binary and coded to reflect whether the home team won the
match or not.

Figure 4 shows a heatmap of correlation between all the
variables used in the training data set.

A dark green square in Figure 4 indicates a strong pos-
itive correlation between two variables and a light (white)
square a strong negative correlation. Many of the variables
were found to be correlated with each other (such as the av-
erage points scored against a team at home and the number
of matches the team lost at home). Nevertheless, the first
column of the heat map provides the degree of correlation
between all the variables (indexed by the rows) with the out-
come of the match. As expected the rank of the home and
away team seemed to be correlated with the match outcome
when compared to other input variables.
2More data were available but 2013 was selected as the cut-
o↵, since as matches stretch further back in time they be-
come less relevant.

3.2 Model Selection
Arguably the most popular random forest algorithm for

classification is Breiman’s Forest-RI [7]. The strategy is to
build an ensemble of randomised trees by sampling with re-
placement from the training data and at each node only se-
lecting a random subset of the input variables as candidates
for splitting.

Forest-RI splits the variable space using orthogonal (per-
pendicular to the variable axis) splits, whereas oblique ran-
dom forests [32] use some linear combination of the variables
for splitting. It has been suggested that oblique trees are
better suited for splitting a space consisting of many corre-
lated variables, therefore in addition to Forest-RI, an oblique
random forest using partial least squares for node splits was
also considered [32, 47].

3.2.1 Parameter Tuning
Both approaches have the same two tuning parameters,

namely the size of the ensemble (number of trees) ntree, and
the size of the subset of randomly selected variables at each
node split, mtry. The mtry parameter was tuned using five-
fold cross-validation [43] over a grid of values. Table 1 shows
the grid search values where those in bold were the optimal
selected by cross-validation.

Table 1: Tuning parameter grid

mtry: Forest-RI mtry: Oblique-RF

1 1
7 7
14 14
27 27
40 40
53 53

The ntree parameter was fixed at 200 after observing at
which point the out-of-bag error curve of the random forests
“flattened out” [6].

3.2.2 Training Time and Test Error
To make the final decision regarding the best model, each

model’s training time and test error were compared 3. The
results are given in Table 2.

Table 2: Model performance

Algorithm Training Time Test Error

Forest-RI 14.32 secs 19.05%
Oblique-RF-PLS 6.39 mins 23.81%

Forest-RI outperformed the oblique random forest both in
terms of training time and test error. Therefore, the model
selected was Forest-RI with an ensemble size 200 and an
mtry set equal to one.

3Training time was deemed important since it was required
to retrain the model between every match.
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Figure 4: Heatmap of correlations between input variables.

3.3 Automated Cloud-Based Predictions
The analytics platform Domino4 [1] was used to create an

automated cloud-based prediction system accessible through
a RESTful API. A schedule was created on the platform to
recollect data after every match based on match dates and
times. Furthermore, once the new data had been collected,
the model was retrained and the prediction API republished
using Domino’s API endpoints service.

Due to the way in which the output variable was coded
(indicator for a home team win), the model was able to pick
up on home team advantage. This meant that di↵erent es-
timates were given for the same match-up based on which
team was playing at home. Since the tournament took place
in England, it was decided to remove this advantage for all
the other teams. To this end, when the API was called with
a match-up (not involving England), two estimates were pro-
duced with each team in turn presented as the home team
and the average estimate of the two scenarios was then sent
back. England was treated as always playing at home.

4. RESULTS
In Table 3 the accuracy of each approach for predicting

matches in the 2015 RWC is provided. The second column
is the number of matches correctly predicted out of a to-
tal of the 48 matches that took place throughout the tour-
nament, with the corresponding accuracy percentage and
95% confidence interval 5 given in the third column. Both

4Domino is an enterprise-grade platform enabling re-
searchers and industry practitioners to run, scale, share and
deploy analytical models.
5Confidence intervals estimated according to Wilson’s inter-
val.

OddsPortal and SuperBru correctly predicted 41 out of 48
matches (85.42%), but were outperformed by the random
forest model with 43 out of 48 correct (89.58%). The dif-
ference in performance is not statistically significant at a
significance level ↵ = 0.05. However, not rejecting the null
hypothesis of lesser or equal performance is not the same as
accepting it. Therefore, the results can only be interpreted
as indicating that there is not enough evidence to suggest
that human agents are significantly superior in terms of pre-
diction performance when compared to a machine learning
approach.

Table 3: Approach Prediction Accuracy

Approach #Correct Accuracy (95%-CI)

Forest-RI Model 43/48 89.58% (77.83, 95.47)
OddsPortal 41/48 85.42% (72.83, 92.75)
SuperBru 41/48 85.42% (72.83, 92.75)

The estimated probabilities for each match is given in Fig-
ure 5. The way the tournament played out is presented from
left to right (with matches on the x-axis) and the probability
presented on the y-axis is the estimated probability for the
team labelled at the top of Figure 5 to win the match. As
previously mentioned, the assumption of symmetric loss was
made regarding misclassification and therefore following the
Bayes classifier given in (3) the threshold for prediction was
chosen to be 0.5.

The model is far more conservative than the other ap-
proaches (almost always being closer to the 0.5 threshold).
The red crosses and green stars in Figure 5 indicate the
matches in which di↵erences in probability estimates be-
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Figure 5: Comparing human versus AI prediction accuracy over the duration of the 2015 RWC.

tween the approaches resulted in disagreement regarding the
winning team. An interesting case is the match between New
Zealand and South Africa. Here the model was more con-
fident than both the other approaches, however SuperBru
is seen to di↵er somewhat, being in favour of South Africa
winning the match.

The quality of the probability estimates themselves were
assessed using the Kelly criterion [29] defined as

f⇤ =
bp� q

b
, (6)

where b is the payout given a one unit bet, p is the es-
timated probability of winning and q = 1 � p [45]. The
criterion is used to calculate the optimal percentage of a
given starting capital to bet at each match using the knowl-
edge of the aforementioned terms. Therefore, probability
estimates can be compared by specifying an equal starting
amount of capital for each approach and making bets based
on (6). The best estimator is then the approach with the
most capital at the end of the tournament. Figure 6 shows
the evolution of winnings given a starting capital of R100.

Two big losses early on in the tournament (Tonga vs.
Georgia and South Africa vs. Japan) cost all the approaches
a considerable sum of their initial capital. But, due to the
conservative nature of the estimates produced by the model
a smaller sum was lost and a subsequent recovery was seen
until Ireland faced Argentina. On the other hand, the con-
fidence of the other two approaches cost them, making re-
covery much less feasible given the little capital left.

5. DISCUSSION
It was shown that their is a lack of evidence to support H2

stating that a human agent is superior to a machine learning
model in terms of prediction accuracy. More specifically, the
results indicate that both proxies of human agents achieved
an accuracy statistically no greater than a Forest-RI model.
However, in terms of a comparison in monetary winnings
calculated via the Kelly criterion the model seemed to show
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Figure 6: Comparing human versus AI monetary
winnings given bets were made throughout the tour-
nament based on the Kelly criterion with a starting
capital of R100.

superior performance.
The study findings are of interest because a large pool

of amateurs, experts and stakeholders alike have not been
able to clearly outperform an artificially intelligent agent us-
ing a machine learning algorithm, fed limited data, ignorant
of many factors perceived to have an impact on predicting
match outcomes. This research underscores the potential
of machine learning based prediction models taking limited
data inputs and creating accurate predictions. Furthermore,
it highlights the progress of artificially intelligent systems in
the realm of prediction and decision sciences.

Several of the more important limitations require atten-
tion. Of central concern is the merit of SuperBru and Odd-
sPortal as proxies for the prediction ability of human agents.
These platforms were selected due to qualities they posses
which are inherent in prediction markets. However, in the
case of OddsPortal, probability estimates were derived from
aggregated odds collected from many bookmakers. This
means that the validity of the assumption that these book-
makers all arrived at their odds through human knowledge



and expertise is by no means guaranteed. SuperBru was se-
lected due to its power as an aggregator of predictions. Over
220 000 people placed close to 10 million predictions on the
platform for the RWC [3]. Nonetheless, there do exist bi-
ases in the predictions derived from both of these platforms.
For instance, a significant proportion of the participants on
SuperBru are South African (180 000), potentially skewing
the predictions due to sentiment and other cognitive biases
such as representativeness.

A further limitation to the generalisability of the findings
to the sport of rugby as a whole exist due to the limited
sample size of 48 matches. In a typical year there are over
100 tier 1 and tier 2 matches [3]. Moreover, because the 48
matches considered were RWC matches, they cannot be con-
sidered typical of all matches in general. There exists a far
greater level of pressure, training and focus put into these
matches than any other. While these results certainly hold
true for RWC matches, and could possibly be generalised to
other non-world cup matches, the extent to which the re-
sults shown could be generalised to other sports is not clear.
Future research in this area should focus on creating a model
capable of predicting results for all forms of rugby matches,
as well as determining whether such a general model could
be extended to other sports.

6. CONCLUSION
This study set out to conduct a comparison between hu-

man prediction ability and an artificially intelligent predic-
tion system. This comparison was conducted in the domain
of sports prediction. More specifically, the intention was to
determine whether the degree of accuracy of two proxies for
human based predictions were significantly greater than an
artificially intelligent system using machine learning when
predicting the outcome of matches at the 2015 RWC. This
process was accomplished through the design and develop-
ment of an automated cloud based prediction system using a
random forest classification algorithm (Forest-RI ). For the
case of the 2015 RWC there was not enough evidence to
suggest that the two proxies for human prediction capabil-
ities outperformed the machine learning approach. More-
over, the random forest model produced superior probabil-
ity estimates when used for betting compared to the other
two platforms.
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